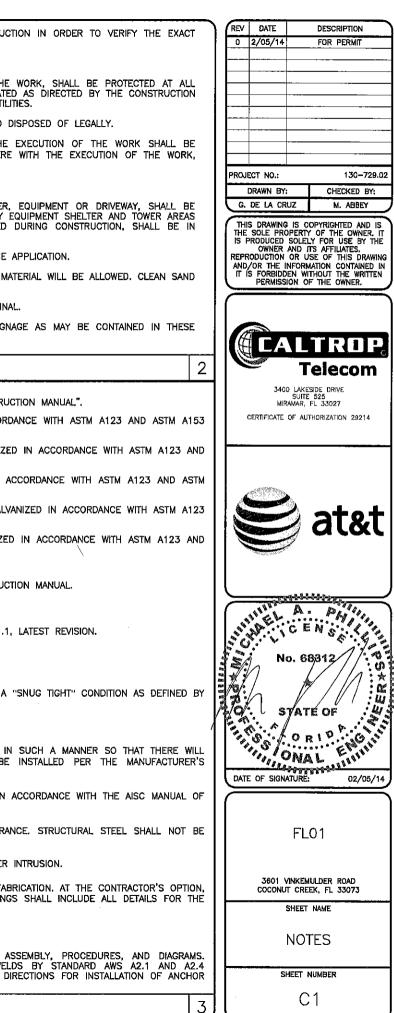


at&t

FL01

3601 VINKEMULDER ROAI COCONUT CREEK, FL 3307

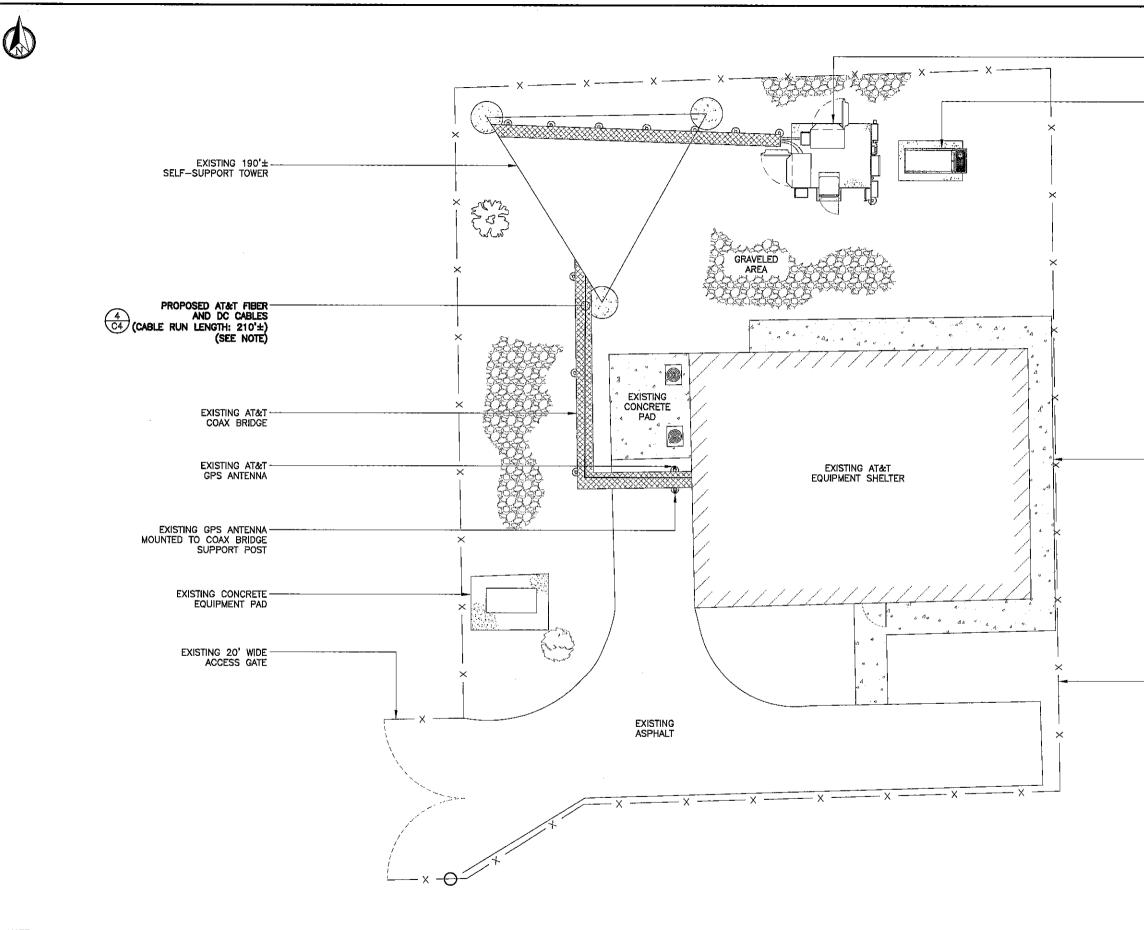
3rd CARRIER OVERLAY

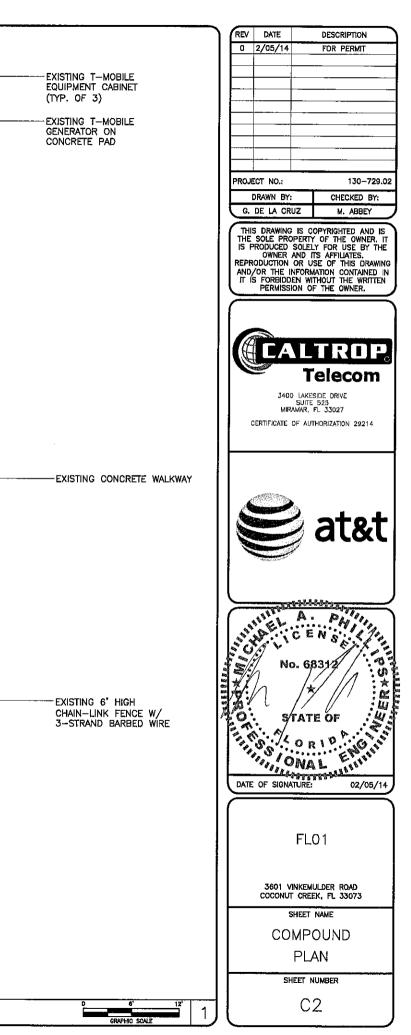

LOCAL MAP	PROPERTY SUMMARY	DESIGN CRITERIA	INDE
Normal of the second of the se	FOLIO #:4842-17-02-0010LATITUDE:26.285308" NLONGITUDE:80.172783" WZONING JURISDICTION:CITY OF COCONUT CREEKZONING CLASSIFICATION:AGRICULTURAL DISTRICT	DESIGN WIND SPEED: 170 MPH (ULTIMATE, 3-SECOND GUST) 132 MPH (NOMINAL, 3-SECOND GUST) C RISK CATEGORY: II OPEN STRUCTURE CODE COMPLIANCE	NO. T1 TITLE SHEET C1 NOTES C2 COMPOUND PL
	CONTACTS	ALL WORK AND MATERIALS SHALL BE PERFORMED AND INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING	
	APPLICANT MIKE KRISSEL AT&T MOBILITY 5201 CONGRESS AVENUE BOCA RATON, FL 33487 (561) 451–7496 PROPERTY_OWNER FLORIDA CELLULAR PHONE C/O AT&T WIRELESS P.O. BOX 97061 REDMOND, WA 98073 RF DESIGN VERIFICATION	FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES. 1. 2010 FLORIDA BUILDING CODE WITH 2012 SUPPLEMENT. 2. NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) 70, NATIONAL ELECTRICAL CODE, 2008 EDITION. 3. TIA-222-G WITH ADDENDUM 1 APPLICABLE STANDARDS. 4. LIFE SAFETY CODE NFPA-101-2009. 5. 2010 FLORIDA FIRE PREVENTION CODE. 6. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) 360-05 AND 341-05. 7. UNDERWRITERS LABORATORIES (U.L.) APPROVED ELECTRICAL PRODUCTS. 8. LOCAL JURISDICTIONAL REQUIREMENTS. 9. CITY/COUNTY ORDINANCES. NOTE: THERE SHALL BE NO PIPES, CONDUITS OR CABLES RAN THROUGH THE STAIRS OR ITS ENVELOPE. LEGAL DESCRIPTION	E1 DC ELECTRICAL E2 GROUNDING DE
Prings control with the rest of the rest o	DESIGN BASED ON RFDS REV 0.2 DATED 11/21/13. CONTRACTOR SHALL REQUEST CURRENT RFDS AND WORKBOOK FROM MASTEC NETWORK SOLUTIONS CONSTRUCTION MANAGER PRIOR TO CONSTRUCTION	COCONUT CREEK CELL SITE "A" 126-31 B & 17-48-42 PARCEL A & TOGETHER WITH E 75 OF S 100 OF:NW1/4 OF NE1/4 SEC 17 & WITH S 20 OF:NW1/4 OF NE1/4 LESS IN 1058.20 & LESS W 1152.90 & LESS P/P/A 126-13 B	
nite desman Prostant Start Winner & Angling and	PROJECT INFORMATION	SCOPE OF WORK	
DRIVING DIRECTIONS FROM MASTEC'S BOCA RATON OFFICE HEAD SOUTH ON 1-95 FOR 8.5 MILES TO EXIT 39 (SR-834/SAMPLE RD), HEAD WEST ON SAMPLE FOR 3.7 MILES TO NW 46th AVE (LYONS RD), TURN RIGHT AND HEAD NORTH ON LYONS FOR 0.8 MILES TO WILES RD, TURN RIGHT AND HEAD EAST ON WILES FOR 0.7 MILES TO NW 39th AVE, TURN RIGHT AND HEAD SOUTH ON 39th FOR 0.3 MILES TO VINKEMULDER RD, TURN LEFT AND HEAD EAST ON VINKEMULDER FOR 0.2 MILES TO SITE ON LEFT SIDE OF ROAD.	 THIS IS AN UNMANNED FACILITY AND WILL BE USED FOR THE TRANSMISSION OF RADIO SIGNALS FOR THE PURPOSE OF PROVIDING PUBLIC CELLULAR SERVICE. NO POTABLE WATER SUPPLY IS TO BE PROVIDED AT THIS LOCATION. NO WASTEWATER WILL BE GENERATED AT THIS LOCATION. NO SOLID WASTE WILL BE GENERATED AT THIS LOCATION. 	 REMOVAL OF (6) EXISTING AT&T ANTENNAS. INSTALLATION OF (9) NEW AT&T ANTENNAS. INSTALLATION OF (6) NEW REMOTE RADIO HEADS (RRHs). INSTALLATION OF (2) NEW SURGE SUPPRESSORS. INSTALLATION OF (3) NEW ANTENNA MOUNTS (WILL CAUSE THE SITE BE OFF-AIR FOR APPROXIMATELY 3 TO 7 DAYS). 	

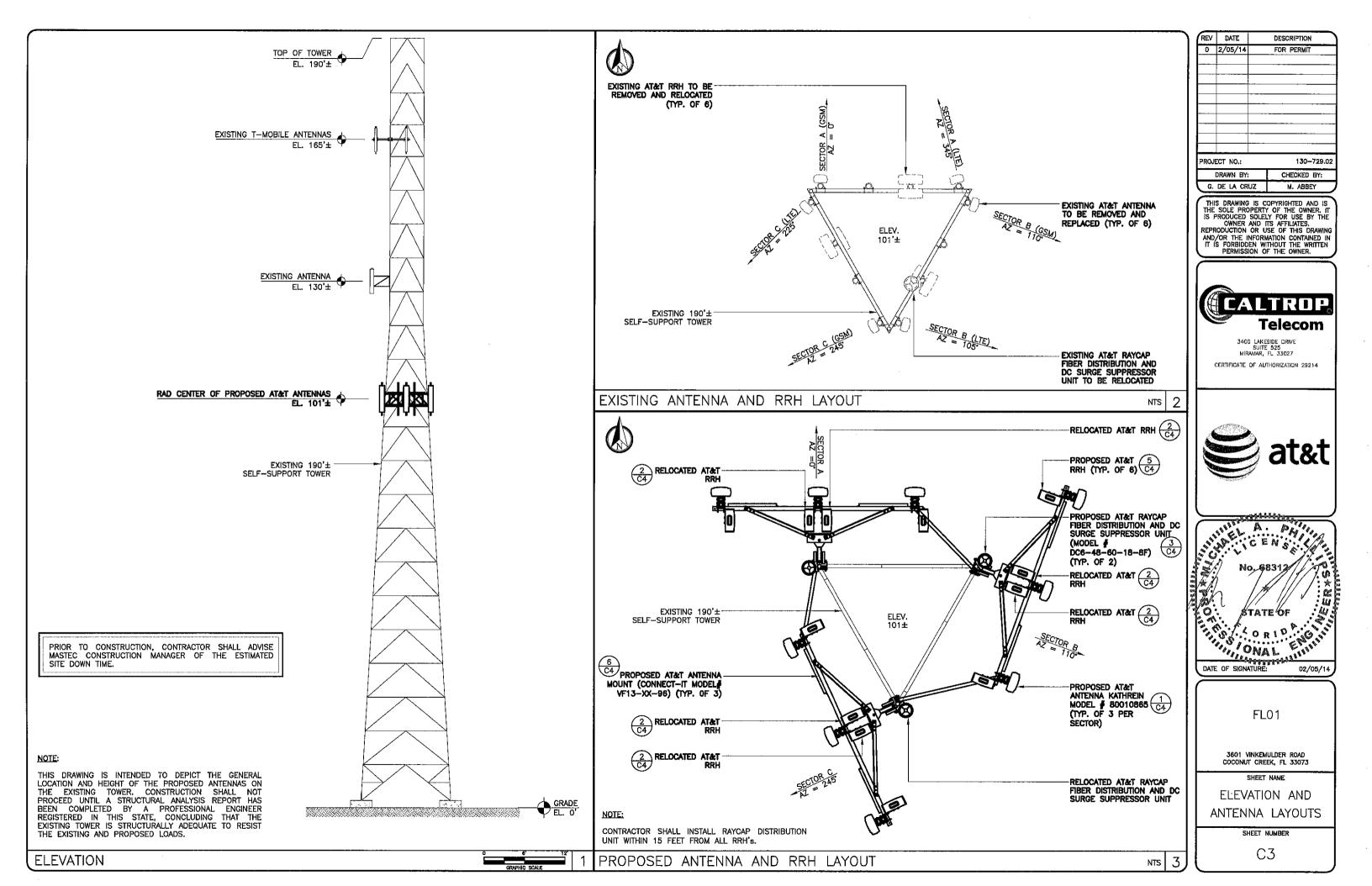
		REV	DATE	DESCRIPTION
		0	2/05/14	FOR PERMIT
		\vdash		
			ECT NO.:	130-729.02
			DRAWN BY: DE LA CR	
D		\geq		IS COPYRIGHTED AND IS
		THE	SOLE PRO	DPERTY OF THE OWNER. IT SOLELY FOR USE BY THE
73		REPR	OWNER	AND ITS AFFILIATES, OR USE OF THIS DRAWING
		AND	OR THE I	NFORMATION CONTAINED IN EN WITHOUT THE WRITTEN ION OF THE OWNER.
		\leq	PERMISS	ION OF THE OWNER.
		\int		
		A		тепе
DEX OF DRAWINGS				
DESCRIPTION	REV.	`	-	Telecom
	NO.		340	0 LAKESIDE DRIVE SUITE 525 RAMAR, FL 33027
Γ	0			
	0		JERINGALE	OF AUTHORIZATION 29214
PLAN	0	 		
AND ANTENNA LAYOUTS	0			
	0			
CAL DETAILS	0		Star Strategy	a.
DETAILS AND NOTES	0			2 -+-+
				at&t
			Same 2	
		\geq		A
0		$\left(\right)$	11-1-L	A. PM////
		1. 1° .	1. 94	CENSSE
/		150	r∙ Vi	
		18;	n N	0. 68312
			h	
			rv į	
		20	. /s	TATE OF
······································		1	5./* 4	001000055
	' –	, and .	1,01,	ORIDEOUN
24-14	-1		1111	THE REAL PROPERTY PARTY
DNIINISTRATIVE APPROVAL 02.24-14		DATE	e of sign/	
ROVAL				
IE APP.	-1			
RATING -	\vdash			FL01
MINIS' C	├ ── 			
NY '				/INKEMULDER ROAD T CREEK, FL 33073
r	\vdash			SHEET NAME
				∽,,,,,, t¥73716
			TITI	LE SHEET
			1116	
			5	HEET NUMBER
			SI	HEET NUMBER
· · · · · · · · · · · · · · · · · · ·			Si	T1

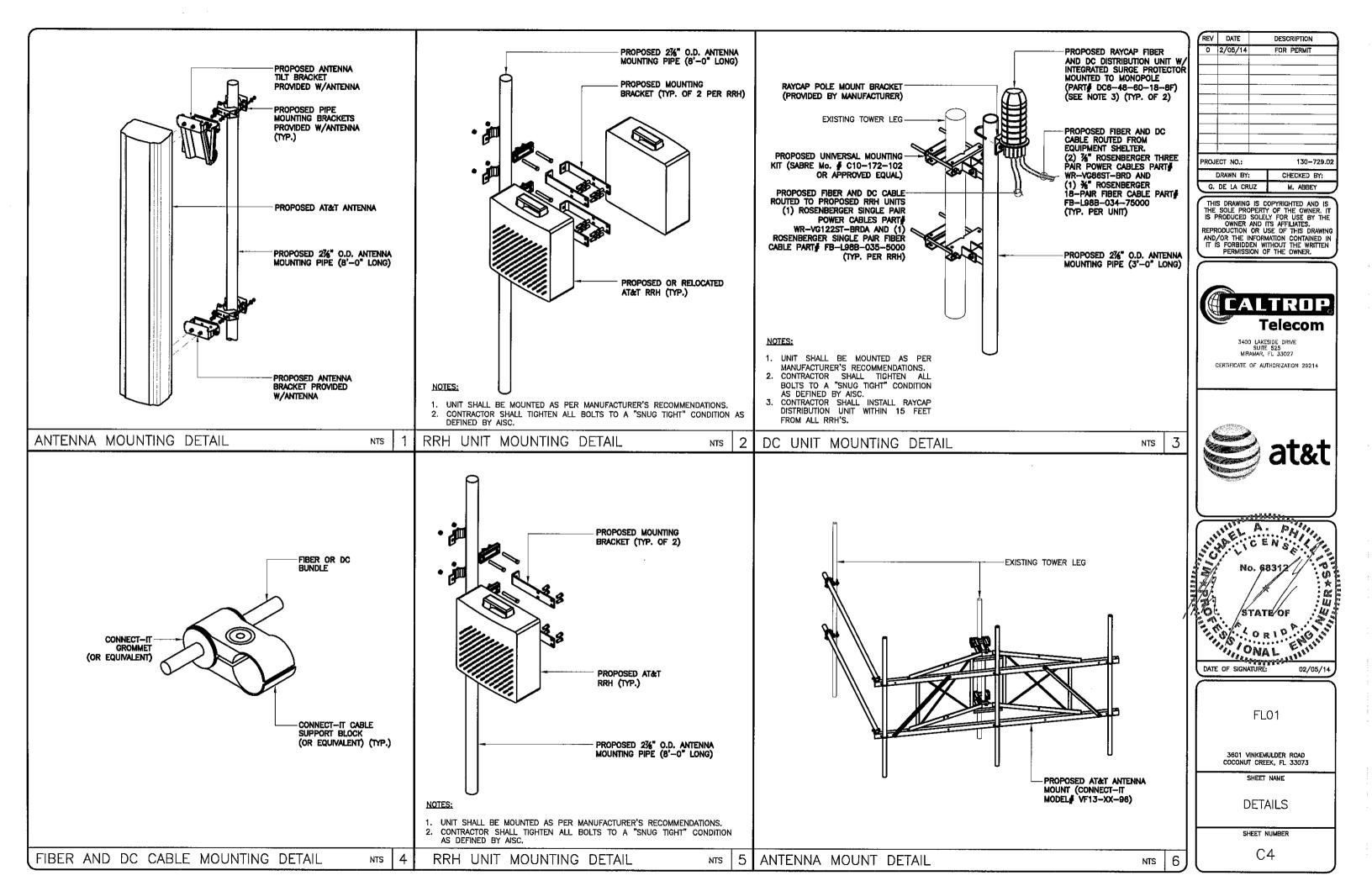
			LOCATION OF ALL EXISTING UNDERGROUND
	OWNER AT&T MOBILITY ENGINEER CALTROP CORPORATION CONTRACTOR GENERAL CONTRACTOR (CONSTRUCTION)		2. THE INSTALLATION OF NEW UTILITIES SHAL
2.	PRIOR TO SUBMITTING HIS BID, THE CONTRACTOR SHALL VISIT THE JOB SITE IN ORDER TO (1) VERIFY ALL EXISTING CONDITIONS, (2) CONFIRM WHETHER ALL DIMENSIONS ARE AS SHOWN ON THE PLANS AND (3) CONFIRM WHETHER THE		 ALL EXISTING ACTIVE SEWER, WATER, GA TIMES. WHERE REQUIRED FOR THE PROPI MANAGER. EXTREME CAUTION SHALL BE U
	WORK MAY BE ACCOMPLISHED AS SHOWN. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE CONSTRUCTION MANAGER.		4. RUBBISH, STUMPS, DEBRIS, STICKS, STON
3.	A 20-FOOT HORIZONTAL CLEARANCE DISTANCE SHALL BE MAINTAINED FROM ALL EXISTING POWER LINES.		 ALL EXISTING INACTIVE SEWER, WATER, REMOVED AND/OR CAPPED, PLUGGED OF SUBJECT TO THE APPROVAL OF THE LAND
4.	THE CONTRACTOR'S USE OF A CONSTRUCTION STAGING AREA SHALL BE COORDINATED WITH THE OWNER WELL IN ADVANCE OF THE CONSTRUCTION START DATE.		6. DISTURBANCE TO THE EXISTING SITE DURI
5.	LABOR, MATERIAL, TOOLS, EQUIPMENT, TRANSPORTATION AND TEMPORARY POWER SERVICES NECESSARY FOR AND INCIDENTAL TO COMPLETION OF ALL WORK SHALL BE PROVIDED AS INDICATED ON THE DRAWINGS AND/OR AS SPECIFIED HEREIN. LABOR AND MATERIALS SHALL BE FURNISHED AS REQUIRED FOR COMPLETE SYSTEMS, INCLUDING ALL ELEMENTS OBVIOUSLY OR REASONABLY INCIDENTAL TO A COMPLETE INSTALLATION, WHETHER OR NOT SPECIFICALLY INDICATED ON THE PLANS.		7. ANY AREAS OF THE CONSTRUCTION SITE GRADED TO A UNIFORM SLOPE. SUCH G AND THE SOIL SHALL BE STABILIZED TO CONFORMANCE WITH THE LOCAL GUIDELING
6.	FOR TASKS REQUIRED TO BE PERFORMED BUT NOT CLEARLY DEFINED OR IDENTIFIED BY THE CONTRACT DOCUMENTS, THE CONTRACTOR SHALL NOT START WORK ON SUCH TASKS WITHOUT HAVING RECEIVED WRITTEN AUTHORIZATION FROM THE CONSTRUCTION MANAGER TO PROCEED.		 THE SUB-GRADE SHALL BE COMPACTED A BACKFILL SHALL CONSIST OF CLEAN SAND FILL SHALL BE FREE OF ALL ROOTS, BOU
7.	THE DRAWINGS ARE DIAGRAMMATIC AND INDICATE THE GENERAL ARRANGEMENT OF SYSTEMS AND EQUIPMENT UNLESS OTHERWISE INDICATED BY DIMENSIONS OR DETAILS. EXACT EQUIPMENT LOCATIONS MAY BE MODIFIED AS REQUIRED BY ACTUAL FIELD CONDITIONS. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE ENGINEER AND THE CONSTRUCTION MANAGER.		 THE SINCE DE TREE OF ALL ROOTS, BOOM THE CONTRACTOR SHALL RESTORE ALL DE SITE SIGNAGE SHALL BE PROVIDED IN AM DRAWINGS.
8.	THE CONTRACTOR SHALL OBTAIN, PAY FOR AND DELIVER ALL REQUIRED PERMITS, CERTIFICATES OF INSPECTION, INCLUDING UTILITY CONNECTION FEES, ETC., REQUIRED BY THE AUTHORITIES HAVING JURISDICTION AND SHALL DELIVER SUCH DOCUMENTS TO THE OWNER PRIOR TO FINAL ACCEPTANCE OF THE WORK.		SITE WORK NOTES
9.	THE CONTRACTOR'S OPERATIONS SHALL BE CONFINED TO AREAS OF NEW CONSTRUCTION.		1. <u>MATERIAL:</u> A. ALL STRUCTURAL STEEL WORK SHALL
10.	ALL NECESSARY PROVISIONS SHALL BE MADE TO PROTECT EXISTING IMPROVEMENTS, PAVING, CURBS, GALVANIZED SURFACES, ETC, AND THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY DAMAGE TO SAME RESULTING FROM THE CONSTRUCTION WORK. ALL DISTURBED AND DAMAGED AREAS SHALL BE RESTORED TO THEIR ORIGINAL CONDITION OR BETTER UPON COMPLETION OF ALL WORK TO THE SATISFACTION OF THE CONSTRUCTION MANAGER.		 B. ALL STRUCTURAL STEEL WF BEAMS STANDARDS. C. ALL STRUCTURAL PLATES, ANGLES, A
11.	THE FOLLOWING CLEANUP TASKS SHALL BE PERFORMED AS FOLLOWS: (1) ON A DAILY BASIS, KEEP THE GENERAL AREA CLEAN AND HAZARD FREE, REMOVING ALL WASTE, DEBRIS AND TRASH FROM THE SITE AND DISPOSING OF SAME IN A LEGAL MANNER. (2) UPON COMPLETION, LEAVE THE PREMISES IN A CLEAN CONDITION AND FREE FROM PAINT SPOTS.		ASTM A153 STANDARDS, D. ALL TS MEMBERS SHALL BE ASTM A153 STANDARDS.
	DUST, OR SMUDGES OF ANY NATURE.		E. ALL STRUCTURAL PIPE MEMBERS SH. AND ASTM A153 STANDARDS.
12.	ALL EQUIPMENT AND MATERIALS SHALL BE INSTALLED IN ACCORDANCE WITH THE RESPECTIVE MANUFACTURER'S RECOMMENDATIONS EXCEPT WHERE IT IS SPECIFICALLY INDICATED OTHERWISE IN THE CONTRACT DOCUMENTS OR WHERE LOCAL CODES OR REGULATIONS TAKE PRECEDENCE.		F. ALL NON_STRUCTURAL PIPE MEMBER ASTM A153 STANDARDS.
13.	ALL WORK PERFORMED AND MATERIALS INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. THE CONTRACTOR SHALL GIVE ALL NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY HAVING JURISDICTION OVER THE PERFORMANCE OF THE WORK. MECHANICAL AND ELECTRICAL SYSTEMS SHALL BE INSTALLED IN ACCORDANCE WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AS WELL AS LOCAL AND STATE CODES, ORDINANCES AND APPLICABLE		2. DESIGN, FABRICATION, AND CONSTRUCTION
	REGULATIONS.		3. <u>WELDING:</u> A. ALL WELDS, WELDERS, AND WELD IN
14.	THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AT ALL TIMES, USING THE BEST SKILLS AND ATTENTION. HE SHALL BE SOLELY RESPONSIBLE FOR ALL OF THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK, INCLUDING CONTACT AND COORDINATION WITH THE CONSTRUCTION MANAGER AND WITH THE OWNER'S AUTHORIZED REPRESENTATIVE.		 B. ALL WELDS SHALL BE MADE WITH E7 C. ALL STEEL SHALL BE SPRAY GALVAN
15.	WITHIN TWENTY ONE (21) WORKING DAYS AFTER PROJECT COMPLETION, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF AS-BUILT DRAWINGS, SWEEP TEST, CYLINDER TESTS, LIEN RELEASES, AND OTHER CLOSEOUT DOCUMENTATION AS REQUIRED BY THE OWNER. ALL SYSTEMS SHALL BE COMPLETELY ASSEMBLED, TESTED, ADJUSTED AND DEMONSTRATED		4. ALL BOLTS SHALL BE GALVANIZED %" DIA AISC. SECURE NUT WITH LOCKING WASHEF
	TO BE READY FOR OPERATION PRIOR TO THE OWNER'S ACCEPTANCE.		5. ANCHOR BOLTS SHALL CONFORM TO ASTM
			 THE CONTRACTOR/STEEL FABRICATOR SHA NOT BE CONFLICT WITH THE REINFORCE INSTRUCTION.
			7. THE CONTRACTOR/STEEL FABRICATOR SHA STEEL CONSTRUCTION.
			8. ALL STRUCTURAL STEEL SHALL BE FABR FLAME CUT UNDER ANY CIRCUMSTANCES V
			9. THE CONTRACTOR/STEEL FABRICATOR SHA
			10. THE CONTRACTOR/STEEL FABRICATOR SHA FIELD SPLICES MAY BE USED FOR ERECT PROPOSED FIELD SPLICES.
			11. AT THE CONTRACTOR'S OPTION, SHOP WE
			12. SUBMIT ORIGINAL SHOP DRAWINGS, INCL INCLUDE DETAILS OF CUTS, CONNECTION SYMBOLS, AND SHOW SIZE, LENGTH, AND BOLTS AND OTHER ANCHORAGES TO BE IN
GI	ENERAL NOTES	1	STRUCTURAL STEEL NOTES
<u> </u>			

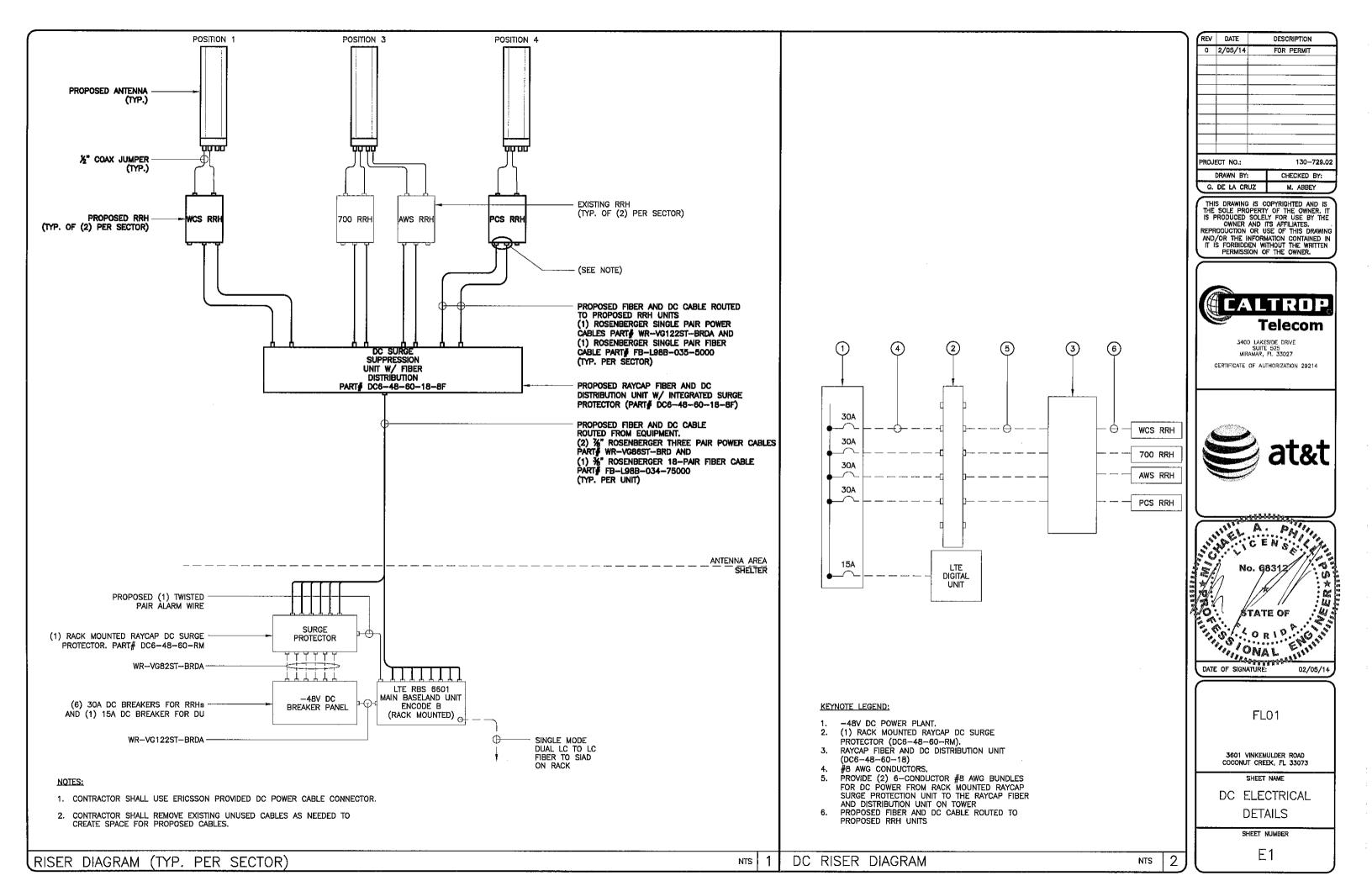
FOR THE PURPOSES OF THESE CONSTRUCTION DRAWINGS. THE FOLLOWING DEFINITIONS SHALL APPLY:

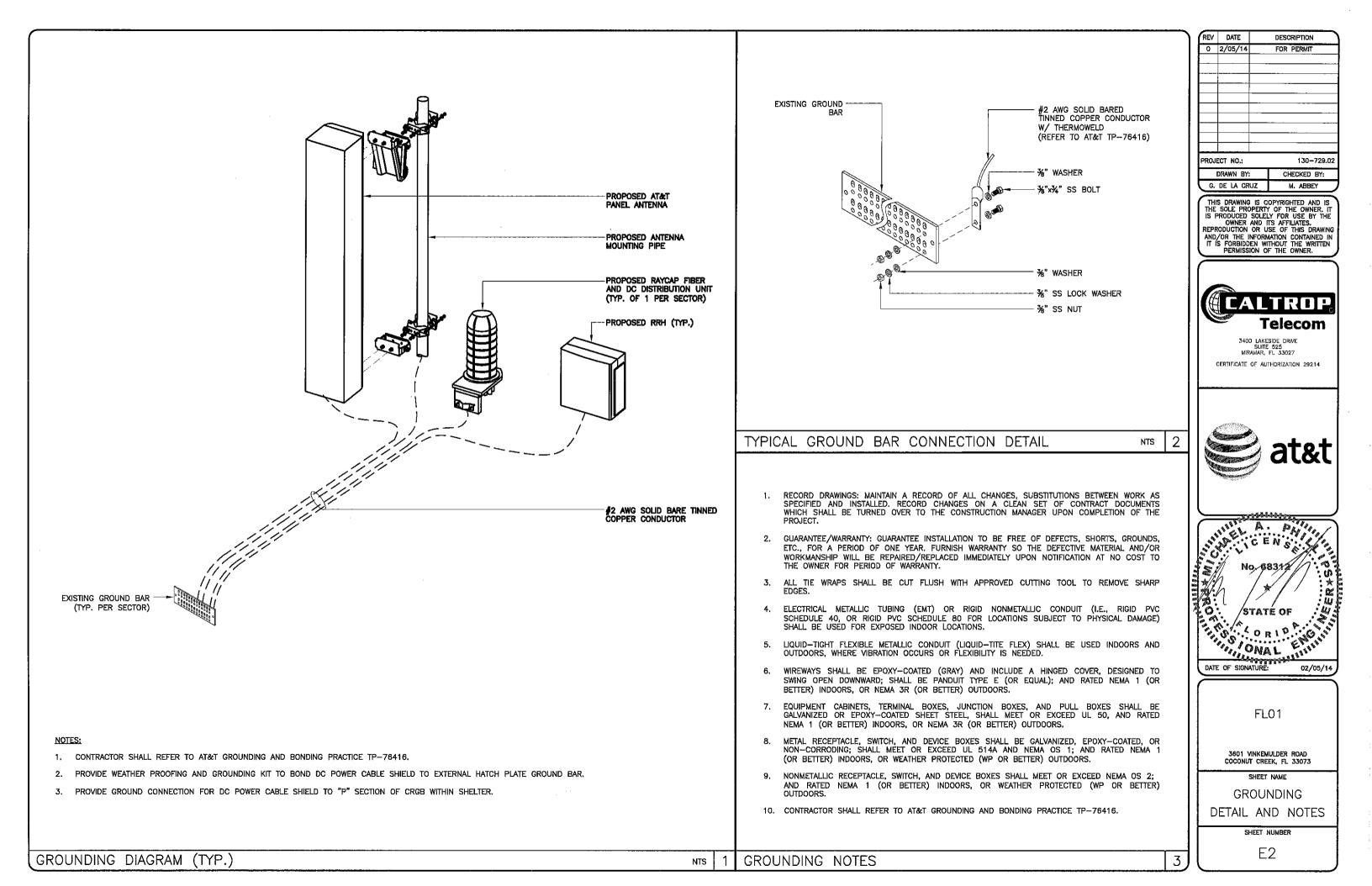

- 1. THE APPROPRIATE UTILITY LOCATING SERVICES SHALL BE CONTACTED PRIOR TO THE START OF CONSTRUCTION IN ORDER TO VERIFY THE EXACT LOCATION OF ALL EXISTING UNDERGROUND UTILITIES.
- ALL BE COORDINATED WITH LOCAL AUTHORITIES.
- GAS, ELECTRIC AND OTHER UTILITIES, WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL PER EXECUTION OF THE WORK, SUCH UTILITIES SHALL BE RELOCATED AS DIRECTED BY THE CONSTRUCTION USED WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES.
- ONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- GAS, ELECTRIC AND OTHER UTILITIES THAT INTERFERE WITH THE EXECUTION OF THE WORK SHALL BE OR OTHERWISE DISCONTINUED AT POINTS THAT WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, NDLORD AND/OR LOCAL UTILITIES.
- RING CONSTRUCTION SHALL BE MINIMIZED.
- TE DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADING SHALL CAUSE SURFACE WATER TO FLOW AWAY FROM ANY EQUIPMENT SHELTER AND TOWER AREAS TO PREVENT EROSION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN NES FOR EROSION AND SEDIMENT CONTROL.
- AND BROUGHT TO A UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- ND FILL APPROVED FOR USE BY THE ENGINEER, NO UNAPPROVED MATERIAL WILL BE ALLOWED, CLEAN SAND DULDERS, OR OTHER DELETERIOUS MATERIAL.
- DISTURBED AREAS TO EQUAL TO OR BETTER CONDITION THAN ORIGINAL.
- ACCORDANCE WITH THE TECHNICAL SPECIFICATIONS FOR SUCH SIGNAGE AS MAY BE CONTAINED IN THESE
 - LL CONFORM TO THE LATEST EDITION OF THE AISC "STEEL CONSTRUCTION MANUAL".
 - SHALL BE ASTM A992 AND "HOT DIPPED" GALVANIZED IN ACCORDANCE WITH ASTM A123 AND ASTM A153
 - AND CHANNELS SHALL BE ASTM A36 AND "HOT DIPPED" GALVANIZED IN ACCORDANCE WITH ASTM A123 AND
 - A500 GRADE B (Fy=46ksi), AND "HOT DIPPED" GALVANIZED IN ACCORDANCE WITH ASTM A123 AND ASTM
 - SHALL BE ASTM A500 GRADE B (Fy=42ksi), AND "HOT DIPPED" GALVANIZED IN ACCORDANCE WITH ASTM A123
 - ERS SHALL BE ASTM A53 GRADE B, AND "HOT DIPPED" GALVANIZED IN ACCORDANCE WITH ASTM A123 AND
- ON OF ALL CONNECTIONS SHALL CONFORM TO AISC STEEL CONSTRUCTION MANUAL.
 - INSPECTIONS SHALL CONFORM TO THE REQUIREMENTS OF AWS D 1.1. LATEST REVISION.
 - E70XX LOW HYDROGEN ELECTRODES.
 - NIZED AFTER WELDING.
- NAMETER, A325-N, UNLESS NOTED OTHERWISE AND TIGHTENED TO A "SNUG TIGHT" CONDITION AS DEFINED BY FR.
- TM A307, UNLESS NOTED OTHERWISE.
- HALL LOCATE ANY REINFORCEMENT IN THE STRUCTURAL MEMBERS IN SUCH A MANNER SO THAT THERE WILL RCEMENT WHEN INSTALLING ANCHORS. THE ANCHORS SHALL BE INSTALLED PER THE MANUFACTURER'S
- HALL CONFORM TO THE MINIMUM EDGE DISTANCE REQUIREMENTS IN ACCORDANCE WITH THE AISC MANUAL OF
- BRICATED TO FIT AT BOLTED CONNECTIONS WITHIN χ_8 INCH TOLERANCE, STRUCTURAL STEEL SHALL NOT BE WITHOUT APPROVAL OF THE ENGINEER.
- ALL CAP OR SEAL ALL PIPES AS REQUIRED TO PREVENT RAINWATER INTRUSION.
- HALL SUBMIT SHOP DRAWINGS FOR REVIEW PRIOR TO ANY STEEL FABRICATION. AT THE CONTRACTOR'S OPTION, CTION PURPOSES. IF FIELD SPLICES ARE USED, THE SHOP DRAWINGS SHALL INCLUDE ALL DETAILS FOR THE
- ELDS MAY BE USED INSTEAD OF FIELD WELDS.
- ICLUDING COMPLETE DETAILS, SCHEDULES OF FABRICATION AND ASSEMBLY, PROCEDURES, AND DIAGRAMS. ONS, CAMBER, HOLE, AND OTHER PERTINENT DATA. INDICATE WELDS BY STANDARD AWS A2.1 AND A2.4 ND TYPE OF WELD. PROVIDE SETTING DRAWINGS, TEMPLATES, AND DIRECTIONS FOR INSTALLATION OF ANCHOR INSTALLED AS WORK OF OTHERS' SECTIONS.






CONTRACTOR SHALL REMOVE EXISTING UNUSED CABLES AS NEEDED TO CREATE SPACE FOR PROPOSED CABLES.


NOTE:



MasTec Network Solutions 6100 Broken Sound Pkwy Suite 6 Boca Raton, FL 33487 (678) 896-9330

GPD# 2013723.04.6990.02 Rev 1 February 3, 2014

REVISED RIGOROUS STRUCTURAL ANALYSIS REPORT

AT&T DESIGNATION:	Site USID: Site FA: Site Name: AT&T Project:	6990 10070109 FL01 MOD_LTE_3C_11-08-2013
ANALYSIS CRITERIA:	Codes:	TIA-222-G, 2009 IBC & 2010 FBC 132-mph Nominal 3-Second Gust with 0″ ice 170-mph Ultimate 3-Second Gust with 0″ ice
SITE DATA:		3601 Vinkemulder Rd., Coconut Creek, FL 33073, Broward County Latitude 26° 17' 5.978" N, Longitude 80° 10' 21.979" W Market: South Florida 192.3' Rohn Self Support Tower

Ms. Bridget Rohack,

GPD is pleased to submit this Rigorous Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

Tower Stress Level with Proposed Equipment:	103.2%	Pass
Foundation Ratio with Proposed Equipment:	99.3%	Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and MasTec Network Solutions. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

Respectfully submitted No 75036 -73 STATE OF John N. Kabak, S.E. Florida #: 75036

SUMMARY & RESULTS

The purpose of this analysis was to verify whether the existing structure is capable of carrying the proposed loading configuration as specified by AT&T to MasTec Network Solutions. This report was commissioned by Ms. Bridget Rohack of MasTec Network Solutions.

The analysis has been performed in accordance with the 2010 Florida Building Code based upon a strength design wind speed of 170 mph and the ASCE 7-10. Wind loading was taken from the 2010 FBC in accordance with Section 1620: High Velocity Hurricane Zones, with Exposure Category C, Risk Category II and a nominal design wind speed of 132 mph 3-second gust.

Modifications by FDH project #: 11-07019E S3, dated 1/13/12, have not been installed and were not considered in this analysis.

Modifications designed by GPD Project #: 2012771.41, dated 6/27/12, have been considered in this analysis.

The proposed DC, Fiber and RET lines to 100' shall be installed with the existing DC, Fiber and RET lines to form a (4) on (4) on (4) configuration for the analysis results to be valid. See Appendix C for the coax layout.

Member	Capacity	Results
Legs	91.9%	Pass
Diagonals	103.2%	Pass
Horizontals	102.6%	Pass
Member Bolts	61.1%	Pass
Anchor Rods	90.6%	Pass
Foundation	99.3%	Pass

TOWER SUMMARY AND RESULTS

Note: Ratings at or below 105% are within standard engineering tolerances and therefore are considered satisfactory.

ANALYSIS METHOD

tnxTower (Version 6.1.3.1), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various dead, live and wind load cases. Selected output from the analysis is included in Appendix B. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information and is being provided without the benefit of a recent site visit.

DOCUMENTS PROVIDED

Document	Remarks	Source
Equipment Modification Form	AT&T Internal Loading Document, uploaded 11/12/13	Siterra
Tower Design	Not Provided	N/A
Foundation Design	Not Provided	N/A
Geotechnical Report	Ground Down Engineering Job #: 11-488, dated 8/26/11	Siterra
Tower Mapping	FDH Job #: 11-07013T T1, dated 8/23/11	Siterra
Foundation Mapping	FDH Job #: 1107019EN1, dated 7/15/11	Siterra
Modification Design	FDH Job #: 11-07019E S3, dated 1/13/12	Siterra
Modification Design	GPD Job #: 2012771.41, dated 6/27/12	Siterra
Previous Structural Analysis	GPD Job #: 2013723.6990.01, dated 3/19/13	Siterra

ASSUMPTIONS

This rigorous structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

- 1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
- 2. The antenna configuration is as supplied and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
- 3. Some assumptions are made regarding antennas and mount sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type and industry practice.
- 4. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
- 5. The soil parameters are as per data supplied or as assumed and stated in the calculations.
- 6. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
- 7. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
- 8. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
- 9. All prior structural modifications are assumed to be as per data supplied/available and to have been properly installed.
- 10. Loading interpreted from photos is accurate to $\pm 5'$ AGL, antenna size accurate to ± 3.3 sf, and coax equal to the number of existing antennas without reserve.
- 11. All existing loading was obtained from the previous analysis by GPD Job #: 2013723.6990.01, dated 3/19/13, site photos, the provided EMF and is assumed to be accurate.
- 12. Modifications by FDH project #: 11-07019E S3, dated 1/13/12 have not been installed and were not considered in this analysis.
- 13. Modifications designed by GPD Project #: 2012771.41, dated 6/27/12, have been considered in this analysis.
- 14. Leg A is assumed to be at 50° per the tower mapping by FDH (Job #: 11-07013T T1, dated 1/13/12).
- 15. The loading considered in this analysis was confirmed through email correspondence with Ms. Bridget Rohack of MasTec Network Solutions, dated 11/23/13.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD Group should be allowed to review any new information to determine its effect on the structural integrity of the tower.

DISCLAIMER OF WARRANTIES

GPD GROUP has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD GROUP in connection with this Rigorous Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. All tower components have been assumed to only resist dead loads when no other loads are applied. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

GPD GROUP does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD GROUP provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the feasibility of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the specified code recommended amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD GROUP, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

GPD GROUP makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD GROUP will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD GROUP pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

Tower Analysis Summary Form

Tower Analysis Summary Form

General Info

Site Name	FL01	
Site Number	6990	
FA Number	10070109	
Date of Analysis	11/25/2013	
Company Performing Analysis	GPD	

Tower Info	Description	Date
Tower Type (G, SST, MP)	SST	
Tower Height (top of steel AGL)	192.3'	
Tower Manufacturer	Rohn	
Tower Model	n/a	
Tower Design	n/a	
Foundation Design	n/a	
Geotech Report	Ground Down Engineering Job #: 11-488	8/26/2011
Modification Drawings	FDH Job #: 11-07019E S3	1/13/2012
Previous Structural Analysis	GPD Job #: 2013723.6990.01	3/19/2013
Foundation Mapping	FDH Project #: 1107019EN1	7/15/2011
Modification Drawings	GPD Job #: 2012771.41	6/27/2012
Tower Mapping	FDH Job #: 11-07013T T1	8/23/2011

Steel Yield Strength (ksi)

Existing / Reserved Loading

Legs	50
Bracing Members	50/36
Member Bolts	A325
Anchor Rods	A354-BC

Note: Steel grades assumed based on experience with similar towers.

The information contained in this summary report is not to be used independently from the PE stamped tower analysis.

Design Parameters TIA-222-G, 2009 IBC & Design Code Used 2010 FBC Location of Tower (County, State) Brow

Location of Tower (Obdinty, State)	Droward, I L
Basic Wind Speed (mph)	132 - 3 second gust
Ice Thickness (in)	0
Structure Classification (I, II, III)	Ш
Exposure Category (B, C, D)	с
Topographic Category (1 to 5)	1

difications by FDH Job #: 11-07019E S3, dated 1/13/12 have not bee talled and were not considered in this analysis

ard FI

lodifications designed by GPD Job #: 2012771.41, dated 6/27/12, have een considered in this analysis.

Analysis Results (% Maximum Usage)

Existing/Reserved + Future + Proposed Condition		
Tower (%)	103.2%	
Anchor Rods (%)	90.6%	
Foundation (%)	99.3%	
Foundation Adequate?	Yes	

			Ant	enna				Mount				Transmission Line			
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Туре	Manufacturer	Model	Azimuth	Quantity	Manufacture	Туре	Quantity	Model	Size	Attachment Leg/Face	
Unknown	189	201	1	Dipole	Unknown	16 Element 20' x 2" Dipole		2	Unknown	8' Frames	2	Unknown	1-5/8"	Face B	
Unknown	189	195.5	1	Yagi	Unknown	3 Element 18" x 12" Yagi				on the 8' Frames	2	Unknown	7/8''	Face B	
Unknown	189	195	1	Omni	Unknown	3" x 8' Omni				on the 8' Frames					
Unknown	189	195	1	Omni	Unknown	2" x 8' Omni				on the 8' Frames					
T-Mobile	165	165	9	Panel	RFS	APX17DWV-17DWV-S-E-ACU	60/180/300	3	Unknown	11.5' T-Frames		Unknown	1-5/8"	Face C	
T-Mobile	165	165	3	RRU	Nokia	FRIG				on the same mounts	1	Hybrid	1-5/8"	Face C	
T-Mobile	165	165	3	RRU	Nokia	FXFB				on the same mounts					
T-Mobile	165	165	3	RRU	Nokia	FRIA				on the same mounts					
T-Mobile	165	165	1	COVP	Raycap	RCMDC-4010-PF-48				on the same mounts					
Unknown	133	137	1	Omni	Unknown	2" x 8' Omni		1	Unknown	2' Standoff	1	Unknown	7/8"	Face B	
Unknown	133	133	1	Dish	Motorola	1' Square Dish				on the same mount					
			-												
AT&T Mobility	100	100	2	Panel	Kathrein	800 10122	0/245			Face Mounted	12	LDF7-50A	7/8"	Face B	
AT&T Mobility	100	100	1	Panel	Kathrein	742 246	110			Face Mounted			3/8"	Face B	
AT&T Mobility	100	100	1	Panel	Kathrein	800 10764	105			Face Mounted			3/8"	Face B	
AT&T Mobility	100	100	2	Panel	Kathrein	800 10765	345/225			Face Mounted	2	DC Power	7/8"	Face B	
AT&T Mobility	100	100	2	ТМА	RFS	ATM192012B-0				Face Mounted					
AT&T Mobility	100	100	4	ТМА	RFS	ATM19801712-0				Face Mounted					
AT&T Mobility	100	100	6	RET	Kathrein	860 10025				Face Mounted					
AT&T Mobility	100	100	6	RRU	Ericsson	RRUS 11				Face Mounted					
AT&T Mobility	100	100	6	Diplexer	Triasx	TBC0020F1V2				Face Mounted					
AT&T Mobility	100	100	1	Surge	Raycap	DC6-48-60-18-8F				Face Mounted					

Note: The existing loading besides (3) RRUS 11, (1) DC6-48-60-18-8F and all existing lines at 100° shall be removed prior to the installation of the proposed loading. (3) RRUS 11, (1) DC6-48-60-18-8F and all existing lines shall be relocated to the proposed mounts and reused.

Proposed Loading

	Antenna									Mount	Transmission Line			
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Туре	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Туре	Quantity	Model	Size	Attachment Leg/Face
AT&T Mobility	100	100	9	Panel	Kathrein	800-10865	105/225/345	3	Connect-it	HDFM-15	2	RET Cable	3/8"	Face B
AT&T Mobility	100	100	9	RRU	Ericsson	RRUS 32				on the same mounts	2	18-pair fiber	3/8"	Face B
AT&T Mobility	100	100	2	Surge	Raycap	DC6-48-60-18-8F				on the same mounts	4	DC Power	7/8''	Face B

Note: The proposed equipment shall be in addition to the remaining existing/reserved loading at the same elevation.

Note: The proposed DC, Fiber and RET lines to 100' shall be installed with the existing DC, Fiber and RET lines to form a (4) on (4) on (4) configuration for the analysis results to be valid. See Appendix C for the coax layout.

Future Loading

	Antenna								Mount		Transmission Line			
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Туре	Manufacturer	Model	Azimuth	Quantity	Manufacturer Type	Quantity	Model	Size	Attachment Leg/Face	

APPENDIX B

tnxTower Output File

tnxTower

6990 FL01

Page 1 of 7

Date

GPD Group 520 South Main St. Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

MasTec Network Solutions

2013723.04.6990.02

Designed by mhoudeshell

07:25:09 11/25/13

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 192.33 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 7.50 ft at the top and 28.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Broward County, Florida.

Basic wind speed of 132 mph.

Structure Class II.

Exposure Category C. Topographic Category 1.

Crest Height 0.00 ft.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face	Allow	Component	Placement	Face	Lateral	#	#	Clear	Width or	Perimeter	Weight
	or	Shield	Type		Offset	Offset		Per	Spacing	Diameter		
	Leg			ft	in	(Frac FW)		Row	in	in	in	plf
Lighting Cables	В	No	Ar (CaAa)	192.30 - 8.00	0.0000	0.21	1	1	0.7500	0.7500		0.33
LDF7-50A (1-5/8 FOAM)	В	No	Ar (CaAa)	190.00 - 8.00	0.0000	0.43	2	2	1.0000	1.9800		0.82
LDF5-50A (7/8 FOAM)	В	No	Ar (CaAa)	190.00 - 8.00	2.5000	0.43	2	2	1.0000	1.0900		0.33
Feedline Ladder (Af)	В	No	Af (CaAa)	190.00 - 8.00	0.0000	0.45	1	1	3.0000	3.0000		8.40
Feedline Ladder (Af)	В	No	Af (CaAa)	190.00 - 8.00	0.0000	0.25	1	1	3.0000	3.0000		8.40
Feedline Ladder (Af)	С	No	Af (CaAa)	190.00 - 8.00	0.0000	0.4	1	1	3.0000	3.0000		8.40
5/8" Step Bolts	А	No	Ar (CaAa)	190.00 - 8.00	0.0000	0.5	1	1	0.4167	0.4167		1.00
5/8" Step Bolts	В	No	Ar (CaAa)	190.00 - 8.00	0.0000	0.5	1	1	0.4167	0.4167		1.00
5/8" Step Bolts	С	No	Ar (CaAa)	190.00 - 8.00	0.0000	0.5	1	1	0.4167	0.4167		1.00
LDF7-50A (1-5/8 FOAM)	С	No	Ar (CaAa)	165.00 - 8.00	-0.7500	0.4	12	6	1.0000	1.9800		0.82
Hybrid 1-5/8	С	No	Ar (CaAa)	165.00 - 8.00	-0.7500	0.37	1	1	1.0000	1.5840		1.61
LDF5-50A (7/8 FOAM)	В	No	Ar (CaAa)	133.00 - 8.00	0.0000	0.2	1	1	1.0000	1.0900		0.33
LDF5-50A (7/8 FOAM)	В	No	Ar (CaAa)	100.00 - 8.00	0.0000	0.45	12	6	1.0000	1.0900		0.33
7/8" DC Power Cable	В	No	Ar (CaAa)	100.00 - 8.00	0.0000	0.22	6	2	0.8750	0.8750		0.60
3/8" Fiber Cable	В	No	Ar (CaAa)	100.00 - 8.00	0.0000	0.24	3	1	0.3750	0.3750		0.10
RET Cable	В	No	Ar (CaAa)	100.00 - 8.00	0.0000	0.25	3	1	0.4400	0.4400		0.08

Client

Job

Project

Job

Project

Client

GPD Group 520 South Main St. Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

6990	FL01

2013723.04.6990.02

20.04.0000.02

Date 07:25:09 11/25/13

2 of 7

Page

MasTec Network Solutions

Designed by mhoudeshell

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft ²	lb
Flash Beacon Lighting	А	From Leg	0.00 0.00 0.00	0.0000	192.30	No Ice	2.70	2.70	50.00
8' Frame	В	From Leg	0.50 0.00 0.00	0.0000	189.00	No Ice	8.83	7.05	268.16
8' Frame	С	From Leg	0.50 0.00 0.00	0.0000	189.00	No Ice	8.83	7.05	268.16
16 Element 20' x 2" Dipole	В	From Leg	1.00 0.00 12.00	0.0000	189.00	No Ice	4.00	4.00	40.00
3 Element 18" x 12" Yagi	С	From Leg	1.00 0.00 6.50	0.0000	189.00	No Ice	0.07	0.07	5.00
3" x 8' Omni	С	From Leg	1.00 0.00 6.00	0.0000	189.00	No Ice	2.40	2.40	25.00
2" x 8' Omni	В	From Leg	1.00 0.00 6.00	0.0000	189.00	No Ice	1.60	1.60	20.00
11.5' T-Frame	А	From Leg	0.98 0.17 0.00	10.0000	165.00	No Ice	16.40	10.28	317.50
11.5' T-Frame	В	From Leg	0.98 0.17 0.00	10.0000	165.00	No Ice	16.40	10.28	317.50
11.5' T-Frame	С	From Leg	0.98 0.17 0.00	10.0000	165.00	No Ice	16.40	10.28	317.50
(3) APX17DWV-17DWV-S-E-A CU w/ Mount Pipe	А	From Leg	1.97 0.35 0.00	10.0000	165.00	No Ice	9.23	4.52	67.60
(3) APX17DWV-17DWV-S-E-A CU w/ Mount Pipe	В	From Leg	1.97 0.35 0.00	10.0000	165.00	No Ice	9.23	4.52	67.60
(3) APX17DWV-17DWV-S-E-A CU w/ Mount Pipe	С	From Leg	1.97 0.35 0.00	10.0000	165.00	No Ice	9.23	4.52	67.60
FRIG	А	From Leg	1.97 0.35 0.00	10.0000	165.00	No Ice	2.79	1.10	57.32
FRIG	В	From Leg	1.97 0.35 0.00	10.0000	165.00	No Ice	2.79	1.10	57.32
FRIG	С	From Leg	1.97 0.35 0.00	10.0000	165.00	No Ice	2.79	1.10	57.32
FXFB	А	From Leg	1.97 0.35 0.00	10.0000	165.00	No Ice	0.99	1.12	55.12
FXFB	В	From Leg	1.97 0.35 0.00	10.0000	165.00	No Ice	0.99	1.12	55.12

tı

•-520 Sol A Pho FA

4 T	Job	Page
tnxTower	6990 FL01	3 of 7
GPD Group	Project	Date
South Main St. Suite 2531	2013723.04.6990.02	07:25:09 11/25/13
Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client MasTec Network Solutions	Designed by mhoudeshell

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Vert						
			ft ft	0	ft		ft^2	ft^2	lb
			ft						
FXFB	С	From Leg	1.97	10.0000	165.00	No Ice	0.99	1.12	55.12
			0.35 0.00						
FRIA	А	From Leg	1.97	10.0000	165.00	No Ice	4.13	0.98	55.00
			0.35						
FRIA	В	From Leg	0.00 1.97	10.0000	165.00	No Ice	4.13	0.98	55.00
			0.35						
FRIA	С	From Leg	0.00 1.97	10.0000	165.00	No Ice	4.13	0.98	55.00
TKIA	C	110111 Leg	0.35	10.0000	105.00	NO ICC	4.15	0.98	55.00
			0.00						
RCMDC-4010-PF-48	А	From Leg	1.97 0.35	10.0000	165.00	No Ice	3.22	1.16	20.00
			0.33						
2' Standoff	А	From Leg	1.00	0.0000	133.00	No Ice	2.97	2.99	55.00
			$0.00 \\ 0.00$						
2" x 8' Omni	А	From Leg	2.00	0.0000	133.00	No Ice	1.60	1.60	20.00
			0.00						
1' Square Dish	А	From Leg	4.00 2.00	0.0000	133.00	No Ice	1.40	0.08	3.00
1 Square Disir	А	110111 Leg	0.00	0.0000	155.00	NO ICC	1.40	0.08	5.00
			0.00						
15' T-Boom	А	From Leg	1.15 1.64	55.0000	100.00	No Ice	23.51	10.62	641.88
			0.00						
15' T-Boom	В	From Leg	1.15	55.0000	100.00	No Ice	23.51	10.62	641.88
			1.64 0.00						
15' T-Boom	С	From Leg	1.15	55.0000	100.00	No Ice	23.51	10.62	641.88
		-	1.64						
(3) 800-10865 w/ Mount Pipe	А	From Leg	0.00 2.29	55.0000	100.00	No Ice	11.70	7.94	106.32
(5) 000 10005 w/ Would Tipe	11	1 Iolli Leg	3.28	55.0000	100.00	ito ice	11.70	7.94	100.52
		- ·	0.00		100.00				106.00
(3) 800-10865 w/ Mount Pipe	В	From Leg	2.29 3.28	55.0000	100.00	No Ice	11.70	7.94	106.32
			0.00						
(3) 800-10865 w/ Mount Pipe	С	From Leg	2.29	55.0000	100.00	No Ice	11.70	7.94	106.32
			3.28 0.00						
(3) RRUS-32	А	From Leg	2.29	55.0000	100.00	No Ice	3.87	2.76	77.00
			3.28						
(3) RRUS-32	В	From Leg	0.00 2.29	55.0000	100.00	No Ice	3.87	2.76	77.00
(*) *			3.28						
(3) DDIIC 22	C	From I ac	0.00	55 0000	100.00	No Ico	2 07	2.76	77.00
(3) RRUS-32	С	From Leg	2.29 3.28	55.0000	100.00	No Ice	3.87	2.70	77.00
		_	0.00						_
RRUS 11	А	From Leg	2.29 3.28	55.0000	100.00	No Ice	3.25	1.37	50.70
			5.28 0.00						
RRUS 11	В	From Leg	2.29	55.0000	100.00	No Ice	3.25	1.37	50.70
			3.28						

A	Job		Page
tnxTower		6990 FL01	4 of 7
GPD Group 520 South Main St. Suite 2531	Project	2013723.04.6990.02	Date 07:25:09 11/25/13
Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	MasTec Network Solutions	Designed by mhoudeshell

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	0	ft		ft ²	ft^2	lb
RRUS 11	С	From Leg	2.29 3.28 0.00	55.0000	100.00	No Ice	3.25	1.37	50.70
DC6-48-60-18-8F Surge Suppression Unit	А	From Leg	2.29 3.28 0.00	55.0000	100.00	No Ice	1.47	1.47	18.90
DC6-48-60-18-8F Surge Suppression Unit	В	From Leg	2.29 3.28 0.00	55.0000	100.00	No Ice	1.47	1.47	18.90
DC6-48-60-18-8F Surge Suppression Unit	С	From Leg	2.29 3.28 0.00	55.0000	100.00	No Ice	1.47	1.47	18.90

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
192.30	Flash Beacon Lighting	32	2.367	0.1114	0.0167	583677
189.00	8' Frame	32	2.290	0.1113	0.0165	583677
165.00	11.5' T-Frame	32	1.732	0.1049	0.0110	106459
133.00	2' Standoff	32	1.098	0.0777	0.0060	62703
100.00	15' T-Boom	32	0.631	0.0569	0.0041	114466

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load per	Allowable Load	Ratio Load	Allowable Ratio	Criteria
100.	ft	Туре	Oruue	in	Bolts	Bolt lb	lb	Allowable	Kullo	
T1	192.333	Leg	A325N	0.7500	4	325.56	29820.60	0.011 🖌	1	Bolt Tension
		Diagonal	A325N	0.5000	3	779.64	7952.16	0.098 🖌	1	Bolt Shear
		Horizontal	A325N	0.6250	3	497.36	12425.20	0.040 🖌	1	Bolt Shear
T2	182.167	Leg	A325N	0.7500	4	3161.69	29820.60	0.106 🖌	1	Bolt Tension
		Diagonal	A325N	0.5000	3	2452.47	7952.16	0.308	1	Bolt Shear
		Horizontal	A325N	0.6250	3	1218.29	12425.20	0.098 🖌	1	Bolt Shear
T3	162	Leg	A325N	0.8750	4	11357.00	40589.10	0.280	1	Bolt Tension
		Diagonal	A325N	0.5000	3	3098.73	7952.16	0.390	1	Bolt Shear
		Horizontal	A325N	0.6250	3	1754.13	12425.20	0.141	1	Bolt Shear
T4	141.833	Leg	A325N	1.0000	4	19375.70	53014.40	0.365	1	Bolt Tension
		Diagonal	A325N	0.5000	3	2968.50	7952.16	0.373	1	Bolt Shear
		Horizontal	A325N	0.6250	3	2009.62	12425.20	0.162 🗸	1	Bolt Shear
T5	121.625	Leg	A325N	1.0000	6	17265.00	53014.40	0.326	1	Bolt Tension
		Diagonal	A325N	0.5000	3	3844.74	7952.16	0.483	1	Bolt Shear
		Horizontal	A325N	0.6250	3	2288.41	12425.20	0.184	1	Bolt Shear
T6	101.417	Leg	A325N	1.0000	6	23062.90	53014.40	0.435	1	Bolt Tension

tnxTower

Job

Project

Client

6990 FL01

Page 5 of 7

Date 07:25:09 11/25/13

GPD Group 520 South Main St. Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

MasTec Network Solutions

2013723.04.6990.02

Designed by mhoudeshell

Section	Elevation	Component	Bolt	Bolt Size	Number	Maximum	Allowable	Ratio	Allowable	Criteria
No.	C.	Туре	Grade		Of	Load per	Load	Load	Ratio	
	ft			in	Bolts	Bolt lb	lb	Allowable		
		Diagonal	A325N	0.6250	3	5808.65	12425.20	0.467 🖌	1	Bolt Shear
		Horizontal	A325N	0.7500	3	3807.42	17892.40	0.213	1	Bolt Shear
T7	81.2082	Leg	A325N	1.0000	6	30039.80	53014.40	0.567 🖌	1	Bolt Tension
		Diagonal	A325N	0.6250	3	5973.76	12425.20	0.481 🖌	1	Bolt Shear
		Horizontal	A325N	0.7500	3	4161.67	17892.40	0.233 🖌	1	Bolt Shear
T8	60.9999	Leg	A325N	1.0000	8	27530.10	53014.40	0.519 🖌	1	Bolt Tension
		Diagonal	A325N	0.6250	3	6259.07	12425.20	0.504 🖌	1	Bolt Shear
		Horizontal	A325N	0.7500	3	4593.57	17892.40	0.257 🖌	1	Bolt Shear
Т9	40.6666	Leg	A325N	1.0000	8	32386.80	53014.40	0.611	1	Bolt Tension
		Diagonal	A325N	0.6250	3	6506.12	12425.20	0.524 🖌	1	Bolt Shear
		Horizontal	A325N	0.7500	3	5003.97	17892.40	0.280	1	Bolt Shear
T10	20.3333	Diagonal	A325N	0.6250	6	4769.29	12425.20	0.384	1	Bolt Shear
		Horizontal	A325N	0.7500	3	5379.05	17892.40	0.301	1	Bolt Shear

Section Capacity Table

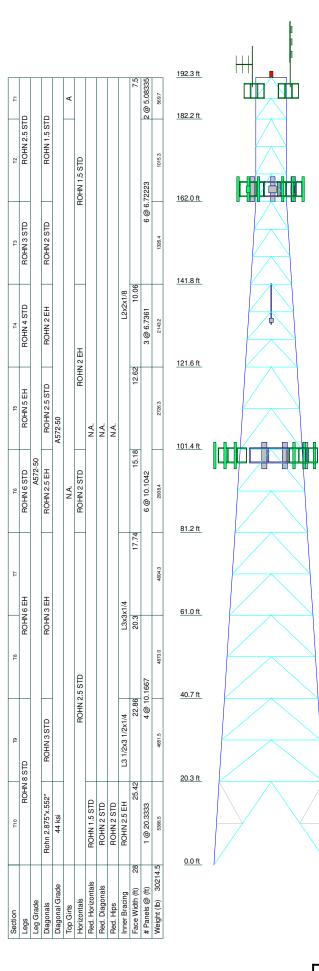
No. ft Type Element lb lb Capacity Fail	Section	Elevation	Component	Size	Critical	Р	ϕP_{allow}	%	Pass
182.167 C T2 182.167 - 162 Leg ROHN 3 STD 29 -15671.40 45132.70 34.7 Pass T3 162 - 141.833 Leg ROHN 3 STD 68 -50409.40 70434.00 71.6 Pass T4 141.833 Leg ROHN 4 STD 107 -84403.40 115687.00 73.0 Pass T5 121.625 Leg ROHN 5 EH 146 -112522.00 199811.00 56.3 Pass T6 101.417 Leg ROHN 6 EH 200 -197874.00 302220.00 65.5 Pass 60.9999 Leg ROHN 6 EH 201 -197874.00 302220.00 65.5 Pass 79 40.6666 Leg ROHN 8 STD 254 -284892.00 332967.00 85.6 Pass 710 20.3333 0 Leg ROHN 8 STD 281 -305924.00 332963.00 91.9 Pass 73 162.67 162 Diagonal ROH	No.	ft	Type		Element	lb		Capacity	Fail
T2 182.167 - 162 Leg ROHN 2.5 STD 29 -15671.40 45132.70 34.7 Pass T3 162 - 141.833 Leg ROHN 3 STD 68 -50409.40 70434.00 71.6 Pass T4 141.833 Leg ROHN 4 STD 107 -84403.40 115687.00 73.0 Pass T5 121.625 Leg ROHN 5 EH 146 -112522.00 199811.00 56.3 Pass T6 101.417 Leg ROHN 6 STD 173 -152502.00 202708.00 75.2 Pass 60.9999 . Leg ROHN 6 EH 200 -197874.00 302220.00 65.5 Pass 40.6666 . Leg ROHN 8 STD 254 -284892.00 332967.00 85.6 Pass T0 20.3333 - Leg ROHN 8 STD 281 -305924.00 332963.00 91.9 Pass T10 20.3333 - Diagonal ROHN 1.5 STD 9 -234891 13001.30 18.0 Pass T2 182.167 Diagonal ROHN 1	T1		Leg	ROHN 2.5 STD	2	-2122.04	56631.20	3.7	Pass
T3 162 - 141.833 Leg ROHN 3 STD 68 -50409.40 70434.00 71.6 Pass T4 141.833 Leg ROHN 4 STD 107 -84403.40 115687.00 73.0 Pass T5 121.625 Leg ROHN 5 EH 146 -112522.00 199811.00 56.3 Pass T6 101.417 Leg ROHN 6 STD 173 -152502.00 202708.00 75.2 Pass 81.2082 Leg ROHN 6 EH 200 -197874.00 302220.00 65.5 Pass 78 60.9999 Leg ROHN 6 EH 227 -241949.00 301385.00 80.3 Pass 710 20.3333 O Leg ROHN 8 STD 281 -305924.00 332967.00 85.6 Pass 711 192.333 - 0 Leg ROHN 1.5 STD 9 -2338.91 13001.30 18.0 Pass 73 162 - 141.833 Diagonal ROHN 2.5 STD 71 -8546.09 15700.50 54.4 Pass 73 162 - 141.833 Diagonal <td< td=""><td>T2</td><td></td><td>Leg</td><td>ROHN 2.5 STD</td><td>29</td><td>-15671.40</td><td>45132.70</td><td>34.7</td><td>Pass</td></td<>	T2		Leg	ROHN 2.5 STD	29	-15671.40	45132.70	34.7	Pass
T4 141.833 - Leg ROHN 4 STD 107 -84403.40 115687.00 73.0 Pass T5 121.625 Leg ROHN 5 EH 146 -112522.00 199811.00 56.3 Pass T6 101.417 Leg ROHN 6 STD 173 -152502.00 202708.00 75.2 Pass T7 81.2082 Leg ROHN 6 EH 200 -197874.00 302220.00 65.5 Pass T8 60.9999 Leg ROHN 8 EH 227 -241949.00 301385.00 80.3 Pass 40.6666 Leg ROHN 8 STD 254 -284892.00 332967.00 85.6 Pass T10 20.3333 O Leg ROHN 8 STD 281 -305924.00 332963.00 91.9 Pass T2 182.167 Diagonal ROHN 1.5 STD 33 -7357.40 8755.79 84.0 Pass T3 162 - 141.833 Diagonal ROHN 2.5 TD 71 -8546.09 15700.50 54.4 Pass T4 141.833 - Diagonal ROHN 2.5 STD 149 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
101.417 Leg ROHN 6 STD 173 -152502.00 202708.00 75.2 Pass T6 101.417 Leg ROHN 6 EH 200 -197874.00 302220.00 65.5 Pass T7 81.2082 Leg ROHN 6 EH 200 -197874.00 302220.00 65.5 Pass T8 60.9999 Leg ROHN 8 EH 227 -241949.00 301385.00 80.3 Pass T9 40.6666 Leg ROHN 8 STD 254 -284892.00 332967.00 85.6 Pass T10 20.3333 - 0 Leg ROHN 8 STD 281 -305924.00 332963.00 91.9 Pass T1 192.333 - 0 Leg ROHN 1.5 STD 9 -2338.91 13001.30 18.0 Pass T2 182.167 - 162 Diagonal ROHN 2 STD 71 -8546.09 15700.50 54.4 Pass T4 141.833 Diagonal ROHN 2 STD 71 -8546.09 15700.50 54.4 Pass T5 121.625 T Diagonal ROHN	T4			ROHN 4 STD	107	-84403.40	115687.00	73.0	Pass
81.2082 Leg ROHN 6 EH 200 -197874.00 302220.00 65.5 Pass T7 81.2082 - 60.9999 Leg ROHN 6 EH 227 -241949.00 301385.00 80.3 Pass 40.6666 T9 40.6666 ROHN 8 STD 254 -284892.00 332967.00 85.6 Pass 710 20.3333 Leg ROHN 8 STD 281 -305924.00 332963.00 91.9 Pass T10 20.3333 - 0 Leg ROHN 1.5 STD 9 -2338.91 13001.30 18.0 Pass T2 182.167 Diagonal ROHN 2 STD 71 -8546.09 15700.50 54.4 Pass T3 162 - 141.833 Diagonal ROHN 2 STD 71 -8546.09 15700.50 54.4 Pass T4 141.833 - Diagonal ROHN 2.5 STD 71 -8905.51 16964.30 52.5 Pass 121.625 Diagonal ROHN 2.5 STD 149 -11520.30 15972.30 72.1 Pass 101.417 Diagonal ROHN 2.5 EH 176 -1742	T5		Leg	ROHN 5 EH	146	-112522.00	199811.00	56.3	Pass
60.9999 Leg ROHN 6 EH 227 -241949.00 301385.00 80.3 Pass T9 40.6666 Leg ROHN 8 STD 254 -284892.00 332967.00 85.6 Pass T10 20.3333 O Leg ROHN 8 STD 281 -305924.00 332963.00 91.9 Pass T1 192.333 - Diagonal ROHN 1.5 STD 9 -2338.91 13001.30 18.0 Pass T2 182.167 T Diagonal ROHN 1.5 STD 9 -2338.91 13001.30 18.0 Pass T3 162 - 141.833 Diagonal ROHN 2 STD 71 -8546.09 15700.50 54.4 Pass T4 141.833 Diagonal ROHN 2 EH 110 -8905.51 16964.30 52.5 Pass T5 121.625 Diagonal ROHN 2.5 STD 149 -11520.30 15972.30 72.1 Pass 101.417 Diagonal ROHN 2.5 EH 176 -17426.00 1777.5.30 98.0 Pass 81.2082 Diagonal ROHN 3 EH 2	T6		Leg	ROHN 6 STD	173	-152502.00	202708.00	75.2	Pass
40.6666 Leg ROHN 8 STD 254 -284892.00 332967.00 85.6 Pass T10 20.3333 Leg ROHN 8 STD 281 -305924.00 332963.00 91.9 Pass T1 192.333 - Diagonal ROHN 1.5 STD 9 -2338.91 13001.30 18.0 Pass 182.167 T2 182.167 - 162 Diagonal ROHN 1.5 STD 33 -7357.40 8755.79 84.0 Pass T3 162 - 141.833 Diagonal ROHN 2 STD 71 -8546.09 15700.50 54.4 Pass T4 141.833 Diagonal ROHN 2 STD 71 -8546.09 15700.50 54.4 Pass 121.625 T5 121.625 Diagonal ROHN 2.5 STD 149 -11520.30 15972.30 72.1 Pass 81.2082 T7 81.2082 Diagonal ROHN 3 EH 203 -17921.30 31452.30 57.0 Pass 60.9999 Diagonal ROHN 3 EH 230 -18777.20 27400.10 68.5 Pass 77 <td< td=""><td>T7</td><td></td><td>Leg</td><td>ROHN 6 EH</td><td>200</td><td>-197874.00</td><td>302220.00</td><td>65.5</td><td>Pass</td></td<>	T7		Leg	ROHN 6 EH	200	-197874.00	302220.00	65.5	Pass
20.3333 1 Leg ROHN 8 STD 281 -305924.00 332963.00 91.9 Pass T1 192.333 - Diagonal ROHN 1.5 STD 9 -2338.91 13001.30 18.0 Pass 182.167 182.167 133 -162 Diagonal ROHN 1.5 STD 33 -7357.40 8755.79 84.0 Pass T3 162 - 141.833 Diagonal ROHN 2 STD 71 -8546.09 15700.50 54.4 Pass T4 141.833 - Diagonal ROHN 2 STD 71 -8546.09 15700.50 54.4 Pass 121.625 121.625 T5 121.625 Pass 101.417 Pass 101.417 Pass 101.417 Pass Pass 101.417 Pass 176 -17426.00 17775.30 98.0 Pass T7 81.2082 Diagonal ROHN 3 EH 203 -17921.30 31452.30 57.0 Pass 60.9999 Pass 40.6666 Pass 230 -18777.20 27400.10 68.5 Pass	T8		Leg	ROHN 6 EH	227	-241949.00	301385.00	80.3	Pass
T1 192.333 - 162 - 162 Diagonal ROHN 1.5 STD 9 -2338.91 13001.30 18.0 Pass T2 182.167 182.167 182.167 33 -7357.40 8755.79 84.0 Pass T3 162 - 141.833 Diagonal ROHN 2 STD 71 -8546.09 15700.50 54.4 Pass T4 141.833 Diagonal ROHN 2 EH 110 -8905.51 16964.30 52.5 Pass 121.625 Diagonal ROHN 2.5 STD 149 -11520.30 15972.30 72.1 Pass 101.417 Diagonal ROHN 2.5 EH 176 -17426.00 17775.30 98.0 Pass 81.2082 Diagonal ROHN 3 EH 203 -17921.30 31452.30 57.0 Pass 60.9999 Diagonal ROHN 3 EH 230 -18777.20 27400.10 68.5 Pass 40.6666 Diagonal ROHN 3 EH 230 -18777.20 27400.10 68.5 Pass	T9		Leg	ROHN 8 STD	254	-284892.00	332967.00	85.6	Pass
182.167 T2 182.167 - 162 Diagonal ROHN 1.5 STD 33 -7357.40 8755.79 84.0 Pass T3 162 - 141.833 Diagonal ROHN 2 STD 71 -8546.09 15700.50 54.4 Pass T4 141.833 - Diagonal ROHN 2 EH 110 -8905.51 16964.30 52.5 Pass 121.625 T5 121.625 - Diagonal ROHN 2.5 STD 149 -11520.30 15972.30 72.1 Pass 101.417 T6 101.417 - Diagonal ROHN 2.5 EH 176 -17426.00 17775.30 98.0 Pass 81.2082 T7 81.2082 - Diagonal ROHN 3 EH 203 -17921.30 31452.30 57.0 Pass 60.9999 T8 60.9999 - Diagonal ROHN 3 EH 230 -18777.20 27400.10 68.5 Pass									
T3 162 - 141.833 Diagonal ROHN 2 STD 71 -8546.09 15700.50 54.4 Pass T4 141.833 - Diagonal ROHN 2 EH 110 -8905.51 16964.30 52.5 Pass T5 121.625 Diagonal ROHN 2.5 STD 149 -11520.30 15972.30 72.1 Pass 101.417 Diagonal ROHN 2.5 EH 176 -17426.00 17775.30 98.0 Pass 81.2082 T7 81.2082 Diagonal ROHN 3 EH 203 -17921.30 31452.30 57.0 Pass 60.9999 Diagonal ROHN 3 EH 230 -18777.20 27400.10 68.5 Pass 40.6666 15099 15099 ROHN 3 EH 230 -18777.20 27400.10 68.5 Pass	T1		Diagonal	ROHN 1.5 STD	9	-2338.91	13001.30	18.0	Pass
T4 141.833 - 101.417 Diagonal ROHN 2 EH 110 -8905.51 16964.30 52.5 Pass T5 121.625 Diagonal ROHN 2.5 STD 149 -11520.30 15972.30 72.1 Pass T6 101.417 Diagonal ROHN 2.5 EH 176 -17426.00 17775.30 98.0 Pass 81.2082 T7 81.2082 Diagonal ROHN 3 EH 203 -17921.30 31452.30 57.0 Pass 60.9999 Diagonal ROHN 3 EH 230 -18777.20 27400.10 68.5 Pass 40.6666 Pass 230 -18777.20 27400.10 68.5 Pass		182.167 - 162							
121.625 Diagonal ROHN 2.5 STD 149 -11520.30 15972.30 72.1 Pass T5 101.417 Diagonal ROHN 2.5 EH 176 -17426.00 17775.30 98.0 Pass 81.2082 T7 81.2082 Diagonal ROHN 3 EH 203 -17921.30 31452.30 57.0 Pass 60.9999 T8 60.9999 - Diagonal ROHN 3 EH 230 -18777.20 27400.10 68.5 Pass 40.6666 Pass 230 -18777.20 27400.10 68.5 Pass		162 - 141.833	Diagonal	ROHN 2 STD		-8546.09	15700.50		Pass
101.417 Diagonal ROHN 2.5 EH 176 -17426.00 17775.30 98.0 Pass 81.2082 T7 81.2082 - Diagonal ROHN 3 EH 203 -17921.30 31452.30 57.0 Pass 60.9999 T8 60.9999 - Diagonal ROHN 3 EH 230 -18777.20 27400.10 68.5 Pass 40.6666 Pass 230 -18777.20 27400.10 68.5 Pass	T4		Diagonal	ROHN 2 EH	110	-8905.51	16964.30	52.5	Pass
81.2082 T7 81.2082 - Diagonal ROHN 3 EH 203 -17921.30 31452.30 57.0 Pass 60.9999 T8 60.9999 - Diagonal ROHN 3 EH 230 -18777.20 27400.10 68.5 Pass 40.6666 <	T5		Diagonal	ROHN 2.5 STD	149	-11520.30	15972.30	72.1	Pass
60.9999 T8 60.9999 - Diagonal ROHN 3 EH 230 -18777.20 27400.10 68.5 Pass 40.6666	T6		Diagonal	ROHN 2.5 EH	176	-17426.00	17775.30	98.0	Pass
40.6666	T7		Diagonal	ROHN 3 EH	203	-17921.30	31452.30	57.0	Pass
T9 40.6666 - Diagonal ROHN 3 STD 257 -19518.40 18913.20 103.2 Pass	T8		Diagonal	ROHN 3 EH	230	-18777.20	27400.10	68.5	Pass
	T9	40.6666 -	Diagonal	ROHN 3 STD	257	-19518.40	18913.20	103.2	Pass

tnxTower

GPD Group 520 South Main St. Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	6990 FL01	6 of 7
Project	2013723.04.6990.02	Date 07:25:09 11/25/13
	2010720.04.0000.02	07:20:00 11/20/10
Client	MasTec Network Solutions	Designed by mhoudeshell

Section	Elevation	Component	Size	Critical	Р	ϕP_{allow}	%	Pass	
No.	ft	Type		Element	lb	lb	Capacity	Fail	
	20.3333								_
T10	20.3333 - 0	Diagonal	Rohn 2.875"x.552"	284	-28615.80	29533.20	96.9	Pass	
T1	192.333 -	Horizontal	ROHN 1.5 STD	7	-1449.92	25150.70	5.8	Pass	
	182.167								
T2	182.167 - 162	Horizontal	ROHN 1.5 STD	31	-3624.05	25150.70	14.4	Pass	
T3	162 - 141.833	Horizontal	ROHN 1.5 STD	70	-5100.31	20971.10	24.3	Pass	
T4	141.833 -	Horizontal	ROHN 2 EH	109	-6028.85	37168.20	16.2	Pass	
	121.625								
T5	121.625 -	Horizontal	ROHN 2 EH	148	-6865.24	29606.80	23.2	Pass	
	101.417								
T6	101.417 -	Horizontal	ROHN 2 STD	175	-11422.30	16509.00	69.2	Pass	
	81.2082								
T7	81.2082 -	Horizontal	ROHN 2.5 STD	202	-12478.60	28142.70	44.3	Pass	
	60.9999								
T8	60.9999 -	Horizontal	ROHN 2.5 STD	229	-13767.20	21707.50	63.4	Pass	
	40.6666								
T9	40.6666 -	Horizontal	ROHN 2.5 STD	256	-14963.20	17497.70	85.5	Pass	
	20.3333								
T10	20.3333 - 0	Horizontal	ROHN 2.5 STD	283	-16137.10	15731.30	102.6	Pass	
T1	192.333 -	Top Girt	ROHN 1.5 STD	4	-316.86	25150.70	1.3	Pass	
	182.167								
T10	20.3333 - 0	Redund Horz 1	ROHN 1.5 STD	288	-5309.40	13524.50	39.3	Pass	
		Bracing							
T10	20.3333 - 0	Redund Diag 1	ROHN 2 STD	293	-4873.43	8736.89	55.8	Pass	
		Bracing							
T10	20.3333 - 0	Redund Hip 1	ROHN 2 STD	308	-93.91	24342.70	0.4	Pass	
		Bracing							
T10	20.3333 - 0	Redund Hip Diagonal	ROHN 2 STD	298	-63.02	4477.39	1.4	Pass	
		Bracing							
T1	192.333 -	Inner Bracing	L2x2x1/8	27	-5.49	7593.94	0.1	Pass	
	182.167								
T2	182.167 - 162	Inner Bracing	L2x2x1/8	40	-6.30	7593.94	0.1	Pass	
T3	162 - 141.833	Inner Bracing	L2x2x1/8	105	-10.67	7593.94	0.1	Pass	
T4	141.833 -	Inner Bracing	L2x2x1/8	120	-8.43	3469.60	0.2	Pass	
	121.625								
T5	121.625 -	Inner Bracing	L2x2x1/8	159	-8.17	2486.31	0.3	Pass	
	101.417								
T6	101.417 -	Inner Bracing	L2x2x1/8	186	-11.33	1773.07	0.6	Pass	
	81.2082							_	
T7	81.2082 -	Inner Bracing	L3x3x1/4	213	-15.07	8754.32	0.2	Pass	
-	60.9999		TO O 111	210		(000 10			
T8	60.9999 -	Inner Bracing	L3x3x1/4	240	-14.47	6800.49	0.2	Pass	
-	40.6666			2/7	12.02	0.5 (5. 0.5			
T9	40.6666 -	Inner Bracing	L3 1/2x3 1/2x1/4	267	-12.92	8765.33	0.3	Pass	
-	20.3333		DOUDLA C DI-	210	12.00	10/08 63			
T10	20.3333 - 0	Inner Bracing	ROHN 2.5 EH	310	-12.98	18687.20	0.2	Pass	


Summary	ELC:	Existing + Proposed + Future
Leg (T10)	91.9	Pass
Diagonal	103.2	Pass
(T9)		
Horizontal	102.6	Pass
(T10)		_
Top Girt	1.3	Pass
(T1)	20.2	P
Redund	39.3	Pass
Horz 1		
Bracing		

A	Job		Page
tnxTower	6990 FL01		7 of 7
GPD Group	Project		Date
520 South Main St. Suite 2531		2013723.04.6990.02	07:25:09 11/25/13
Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	MasTec Network Solutions	Designed by mhoudeshell

Elevation	Component	Size	Critical	Р	ϕP_{allow}	%	Pass
ft	Type		Element	lb	lb	Capacity	Fail
					(T10)		
					Redund	55.8	Pass
					Diag 1		
					Bracing		
					(T10)		
					Redund Hip	0.4	Pass
					1 Bracing		
					(T10)		
					Redund Hip	1.4	Pass
					Diagonal		
					Bracing		
					(T10)		
					Inner	0.6	Pass
					Bracing (T6)		
					Bolt Checks	61.1	Pass
					Rating =	103.2	Pass
		1	1 -	1 -	1 -	ft Type Element lb lb (T10) Redund Diag 1 Bracing (T10) Redund Hip 1 Bracing (T10) Redund Hip 1 Bracing (T10) Redund Hip Diagonal Bracing (T10) Inner Bracing (T6)	ft Type Element lb lb Capacity (T10) Redund 55.8 Diag 1 Bracing (T10) Redund Hip 0.4 1 Bracing (T10) (T10) Redund Hip 0.4 1 Bracing (T10) (T10) Redund Hip 1.4 Diagonal Bracing (T10) Inner 0.6 Bracing (T6) Bolt Checks 61.1

APPENDIX C

Tower Elevation Drawing

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Flash Beacon Lighting	192.3	FRIA	165
8' Frame	189	RCMDC-4010-PF-48	165
8' Frame	189	2' Standoff	133
16 Element 20' x 2" Dipole	189	2" x 8' Omni	133
3 Element 18" x 12" Yagi	189	1' Square Dish	133
3" x 8' Omni	189	15' T-Boom	100
2" x 8' Omni	189	15' T-Boom	100
11.5' T-Frame	165	15' T-Boom	100
11.5' T-Frame	165	(3) 800-10865 w/ Mount Pipe	100
11.5' T-Frame	165	(3) 800-10865 w/ Mount Pipe	100
(3) APX17DWV-17DWV-S-E-ACU w/	165	(3) 800-10865 w/ Mount Pipe	100
Mount Pipe		(3) RRUS-32	100
(3) APX17DWV-17DWV-S-E-ACU w/	165	(3) RRUS-32	100
Mount Pipe		(3) RRUS-32	100
(3) APX17DWV-17DWV-S-E-ACU w/ Mount Pipe	165	RRUS 11	100
FRIG	165	RRUS 11	100
FRIG	165	RRUS 11	100
FRIG	165	DC6-48-60-18-8F Surge Suppression	100
FRIG	165	Unit	
FXFB	165	DC6-48-60-18-8F Surge Suppression	100
FXFB		Unit	
	165	DC6-48-60-18-8F Surge Suppression	100
FRIA	165	Unit	
FRIA	165		

SYMBOL LIST

MARK	SIZE	MARK	SIZE
Α	ROHN 1.5 STD		

MATERIAL STRENGTH								
GRADE	Fy	Fu	GRADE	Fy	Fu			
A572-50	50 ksi	65 ksi	44 ksi	44 ksi	60 ksi			

TOWER DESIGN NOTES

2.

Tower is located in Broward County, Florida. Tower designed for Exposure C to the TIA-222-G Standard. Tower designed for a 132 mph basic wind in accordance with the TIA-222-G Standard. 3.

Deflections are based upon a 60 mph wind. 4.

5. Tower Structure Class II.

Topographic Category 1 with Crest Height of 0.00 ft TOWER RATING: 103.2% 6.

7

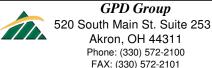
ALL REACTIONS ARE FACTORED

 \triangle

MAX. CORNER REACTIONS AT BASE: DOWN: 344819 lb SHEAR: 47280 lb

UPLIFT: -313422 lb SHEAR: 44863 lb

AXIAL 54039 lb


SHEAR

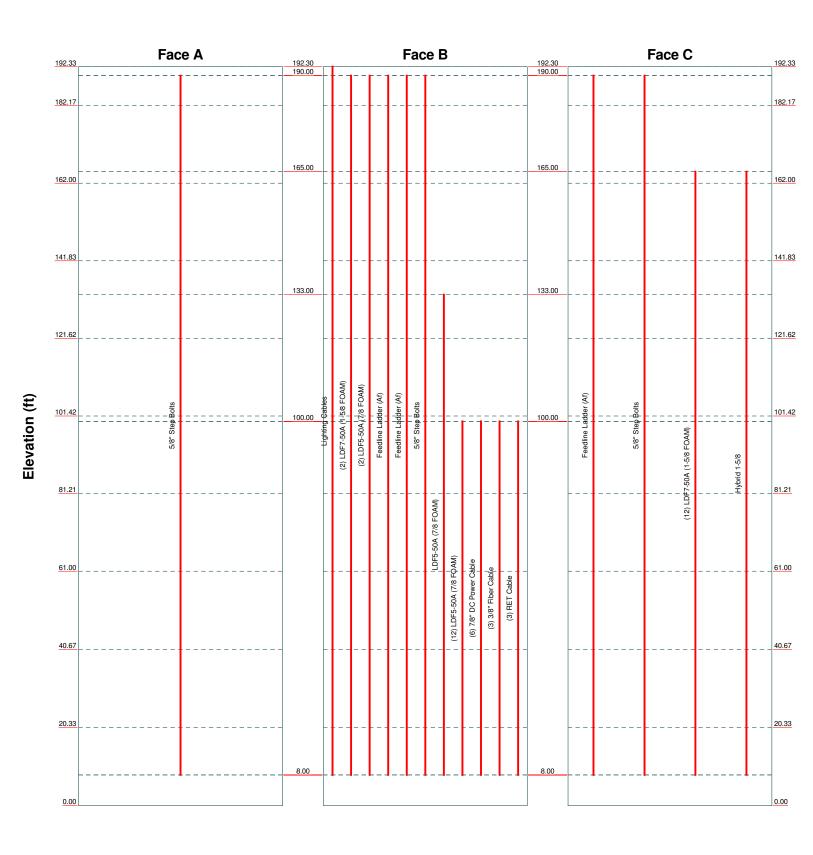
81039 lb

MOMENT 7940654 lb-ft

TORQUE 35972 lb-ft

REACTIONS - 132 mph WIND

	^{Job:} 6990 FL01		
31	Project: 2013723.04.6990.02		
	Client: MasTec Network Solutions	^{Drawn by:} mhoudeshell	App'd:
	^{Code:} TIA-222-G	Date: 11/25/13	Scale: NTS
	Path: N:\2011\ATandT\6990\7 2013723 04 6990 02	Nsoro SA\TNX\6990.eri	Dwg No. E-1

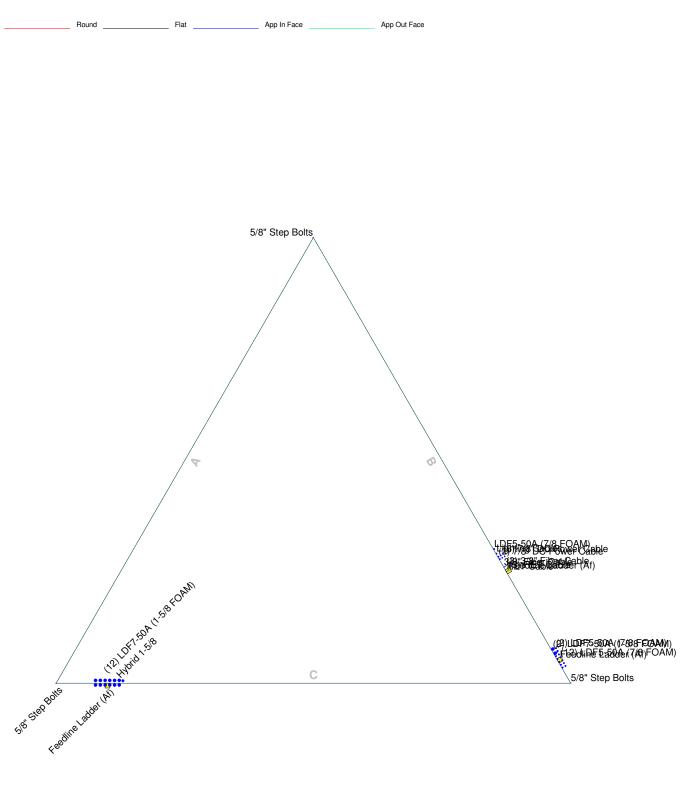

Feed Line Distribution Chart

Flat

Round

0' - 192'3-31/32" App In Face App Out Face

Truss Leg



GPD Group 520 South Main St. Suite 253 Δkron ΟΗ 44211 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

	^{Job:} 6990 FL01		
31	Project: 2013723.04.6990.02		
	Client: MasTec Network Solutions	Drawn by: mhoudeshell	App'd:
	^{Code:} TIA-222-G	Date: 11/25/13	Scale: NTS
	Path: N:\2011\ATandT\6990\7 2013723 04 6990 02	Nsoro SA\TNX\6990.eri	Dwg No. E-7

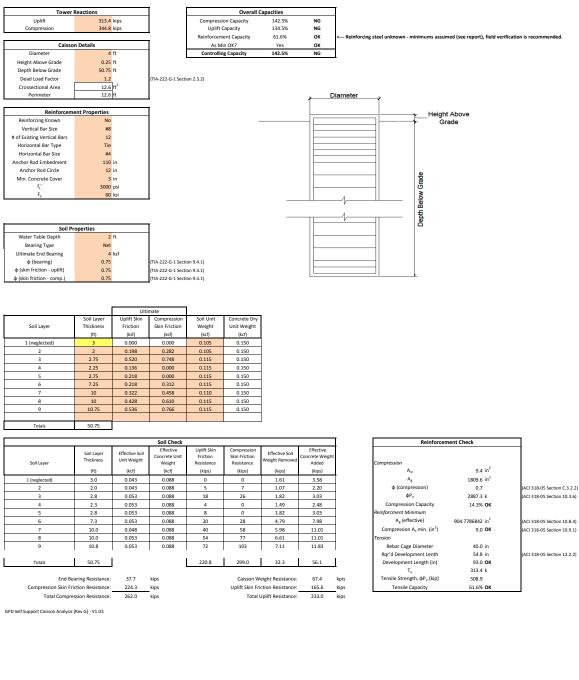
Feed Line Plan

APPENDIX D

Anchor Rod Analysis

Self Support Anchor Rod Analysis (Rev G) 6990 FL01 2013723.04.6990.02

	Anchor Rod Check per Section 4.9.9 of TIA-222-G		
Number of Anchor Rods=	8		
Anchor Rod Grade=	A354-BC		
Diameter of Anchor Rod=	1	in	
V _u =	47.28	k	
P _u =	344.819	k	
F _{ub} =	125	ksi	
A _n =	0.6060	in ²	
R _{nt} =	75.75	k	
φ=	0.8		
n=	0.5	TIA-222-G Fi	gure 4-4 & section 4.9.9
Interaction=	0.9063		
Percent Capacity=	90.6%	ОК	


APPENDIX E

Foundation Analysis

Self Support Tower Caisson Analysis - Rev G

6990 FL01 2013723.04.6990.02 (skin friction adjusted to account for collar)

1801 Watermark Drive.Suite 150. Columbus, Ohio 43215 • PHONE 614-210-0751 • FAX 614-210-0752

GPD GROUP Engineers . Architects . Planners Calculated By Job 7013723.04,6990.02 Date 11-25-13 Sheet No. Of Checked By Date Caisson W/ Collar Check TNX Reactions: Uplift= 313, 422K (cmpression = 344 8194 $C_{0}[lar Weight = 0.VE(2.25') [(12'x12') - (42)(11'y)] + 0.0876(5.75') [(12'x12') - (412'TZ)] = 44.361K + 66.20K = 110.561K$ Uplift Check resistance from Spreadsheet = ZIKO, ZK total resistance = 216.2+ 6.9(110.56K) = 315.7K Capacity = 313.422K × 100 - 99.3% Compression Check resistance from spread sweet = 262.0 K Collar Dearing = [(12'x12) + 4=(17/4)](4KeA(0,75) = 394,8K total resistance = 262K+894.3K=656,3K Capperity = 344, 819K + 1.2(110.5614) ×100 = 72.8% 656.BX

-